The Unseen Risks of Inferior Special Steels: How Choosing the Right Material Can Save Lives and Money

In today’s fast-paced industrial landscape, where precision, durability, and safety are paramount, the choice of materials can be the difference between success and catastrophe. Special steels—engineered for specific applications—play a crucial role in a wide range of industries, from aerospace to automotive, construction to medical devices. However, not all special steels are created equal, and the consequences of using inferior materials can be dire. This article delves into the often-overlooked risks associated with low-grade special steels and underscores the importance of selecting the right material for your critical applications.

The Dangers of Inferior Quality

At first glance, the cost savings from opting for cheaper, lower-quality special steels might seem tempting. However, these savings can be deceptive, as the true cost of using substandard materials often manifests later, in the form of equipment failures, increased maintenance, and, in the worst cases, accidents that jeopardize human lives.

Inferior special steels may lack the necessary strength, corrosion resistance, or heat tolerance required for demanding applications. For instance, in the construction industry, the use of low-quality steel can lead to structural weaknesses, increasing the risk of collapse. In the automotive and aerospace sectors, where safety is non-negotiable, subpar steel can result in mechanical failures with potentially fatal outcomes.

Real-World Incidents: The Consequences of Cutting Corners

History is replete with examples where the use of inferior materials has led to disastrous outcomes. One of the most notorious cases is the collapse of the Silver Bridge in 1967, which resulted in 46 deaths. The disaster was attributed to the failure of a single eyebar made from poor-quality steel. This tragedy underscores the fact that even minor material flaws can have catastrophic consequences.

In another instance, a major automotive recall was initiated due to the use of defective steel in the manufacturing of brake components. The substandard material led to premature wear and tear, compromising the safety of thousands of vehicles on the road. The recall not only cost the company millions of dollars but also damaged its reputation.

These examples illustrate the hidden dangers of using low-grade special steels. The financial savings from purchasing cheaper materials can quickly evaporate in the face of legal liabilities, repair costs, and, most importantly, the loss of human life.

How to Identify Superior Special Steels

Given the high stakes, it is imperative to ensure that the special steels you use meet the highest standards of quality. Here are some guidelines to help you make informed decisions:

  1. Certifications and Standards: Always check for compliance with recognized industry standards, such as ASTM, ISO, or DIN. These certifications are a hallmark of quality and ensure that the steel meets specific performance criteria.
  2. Supplier Reputation: Choose suppliers with a proven track record in delivering high-quality special steels. Conduct due diligence by reviewing customer testimonials, case studies, and any available third-party audits.
  3. Material Testing: Insist on thorough testing of the steel, including tensile strength, hardness, impact resistance, and chemical composition. Reliable suppliers will provide detailed test reports and certificates of compliance.
  4. Traceability: Ensure that the steel can be traced back to its origin, including the specific batch or heat. This traceability is crucial for maintaining quality control and accountability throughout the supply chain.

Cost vs. Value: The True Economics of Material Selection

While high-quality special steels may come with a higher upfront cost, the long-term benefits far outweigh the initial investment. Superior materials offer greater durability, reducing the frequency of maintenance and replacement. They also provide enhanced performance, which can lead to increased efficiency and productivity in manufacturing processes.

Moreover, investing in premium special steels can protect your brand’s reputation. In industries where safety and reliability are paramount, the cost of a recall or lawsuit resulting from material failure can far exceed the savings from using cheaper steel.

Ultimately, the choice of material should not be driven by cost alone. Instead, it should be viewed as an investment in safety, reliability, and long-term success.

Conclusion: Prioritizing Quality and Safety

In a world where the demand for high-performance materials is ever-increasing, the risks of using inferior special steels cannot be overstated. The decisions made during the material selection process can have far-reaching implications, affecting not only the bottom line but also the safety and well-being of people.

As manufacturers, engineers, and decision-makers, it is our responsibility to prioritize quality and safety in every aspect of our work. By choosing the right special steels, we can mitigate risks, protect lives, and ensure the long-term success of our projects.

At Steelmet Industries, we understand the critical importance of material quality. Our commitment to providing only the highest-grade special steels is unwavering, ensuring that our customers receive products that meet and exceed industry standards. Don’t let the allure of cost savings cloud your judgment. Invest in the right materials today, and safeguard your future.

Visit us at www.steelmet.in to learn more about our range of special steels and how we can support your business needs.

 

Understanding the Differences Between Cold Drawn Steel Bright Bars, Peeled Bars, and Ground Bars

When it comes to steel bars, the terms “cold drawn,” “peeled,” and “ground” often create confusion. Each of these terms refers to specific processes that produce bright bars, but they are distinct in their methods and applications. This article aims to clarify the differences between these types of steel bright bars and debunk common myths associated with them.

Cold Drawn Steel Bright Bars

Process: Cold drawing involves pulling the steel through a die to reduce its diameter and improve its mechanical properties. This process is performed at room temperature, which enhances the steel’s strength and surface finish without altering its physical dimensions significantly. The cold drawing process can involve multiple passes through progressively smaller dies to achieve the desired diameter and properties.

Benefits:

  • Improved Strength: The cold drawing process increases tensile and yield strength due to work hardening.
  • Enhanced Surface Finish: The bars achieve a smooth, bright finish that is aesthetically pleasing and functionally advantageous in reducing friction in moving parts.
  • Dimensional Precision: Tight tolerances are maintained, which is crucial for applications requiring precise measurements.
  • Typically suitable for smaller diameters.

Applications: Cold drawn steel bright bars are commonly used in applications requiring high precision, such as in automotive parts, engineering components, construction materials, and furniture manufacturing.

Myths:

  1. Myth: Cold drawn steel is brittle.    Fact: Cold drawing increases the tensile strength and yield strength of the steel, making it tougher and more resistant to deformation under stress. Proper heat treatment can further enhance toughness.
  2. Myth: Cold drawn bars have poor dimensional accuracy.    Fact: The cold drawing process significantly improves the dimensional accuracy and surface finish of the steel bars, making them ideal for precision applications.

Peeled Bars

Process: Peeled bars are produced by removing the outer layer of the hot rolled bar using a cutting tool. This process, known as peeling, eliminates surface imperfections and decarburized layers (where carbon is lost from the steel surface, affecting its strength and machinability), resulting in a smooth and uniform surface. Peeling can be followed by straightening and polishing processes to further enhance the bar’s properties.

Benefits:

  • Surface Quality: Peeling removes surface defects, ensuring a consistent and high-quality finish.
  • Uniformity: The process produces bars with consistent dimensions and surface characteristics.
  • Reduced Stress: Peeling can help reduce residual stresses in the material, enhancing its performance in critical applications.

Applications: Peeled bars are used in applications where surface quality is crucial, such as in the manufacture of shafts, spindles, hydraulic cylinders, and other high-precision components.

Myths:

  1. Myth: Peeled bars are less strong than cold drawn bars.    Fact: Peeling does not significantly alter the mechanical properties of the steel. The strength of peeled bars is comparable to that of the original material, and further processes like heat treatment can enhance their properties.
  2. Myth: Peeled bars have a rough surface finish.    Fact: The peeling process is specifically designed to improve the surface finish by removing imperfections and decarburized layers, resulting in a smooth and polished appearance.

Ground Bars

Process: Ground bars are produced by grinding the surface of the steel bar to achieve a high degree of precision and smoothness. This process is often used as a finishing step after cold drawing or peeling to achieve the desired dimensions and surface quality. Grinding can involve multiple passes with abrasive wheels of varying grit sizes.

Benefits:

  • Precision: Grinding achieves extremely tight tolerances, making ground bars suitable for the most demanding applications.
  • Surface Smoothness: The process results in a high-quality, mirror-like finish that reduces friction and wear in moving parts.
  • Consistency: Ground bars have uniform properties and dimensions along their entire length.

Applications: Ground bars are used in applications requiring extremely tight tolerances and high surface quality, such as in the production of precision instruments, hydraulic systems, medical devices, aerospace components, and high-precision machining.

Myths:

  1. Myth: Ground bars are more expensive without offering significant benefits.    Fact: While ground bars may be more expensive due to the additional processing, they offer superior dimensional accuracy and surface finish, which can be critical in high-precision applications. The investment in ground bars can result in longer-lasting components and reduced maintenance costs.
  2. Myth: Ground bars are only necessary for niche applications.    Fact: Ground bars are essential in any application where tight tolerances and high surface quality are required, making them indispensable in many industries, including automotive, aerospace, and medical device manufacturing.

Conclusion

Understanding the differences between cold drawn steel bright bars, peeled bars, and ground bars is crucial for selecting the right material for your application. Each type of bar has its unique advantages and is suited for specific uses. By debunking common myths, we hope to provide clarity and assist in making informed decisions regarding the use of these versatile steel products.

For more information on our range of steel bright bars and their applications, visit www.steelmet.in.


Steelmet Industries

| Innovative Steel Solutions for a Better Tomorrow |

Visit our website | Contact Us for Inquiries

#Steel #SteelGrades #Manufacturing #Construction #SteelmetIndustries #QualitySteel #SteelIndustry #AlloySteel #CarbonSteel #ToolSteel #DieSteels #StainlessSteels #FreeCuttingSteels

 

VD vs. Non-VD Route Steels: Understanding the differences for optimal material selection

In the world of steel, choosing the right material for the job is crucial. Understanding the distinction between VD (vacuum degassed) and non-VD route steels empowers informed decisions and ensures optimal performance in your applications.

Production Processes:

  • VD Route Steels: Produced through a meticulous process involving vacuum degassing. This technique removes dissolved gases like hydrogen, nitrogen, and oxygen from molten steel, resulting in exceptional purity and cleanliness.

  • Non-VD Route Steels: Manufactured using conventional steelmaking methods without vacuum degassing. These steels may contain higher levels of dissolved gases and impurities.

Applications:

  • VD Route Steels: Preferred for critical applications demanding high purity and top-notch mechanical performance. Examples include automotive components, aerospace parts, and high-strength construction materials.

  • Non-VD Route Steels: Suitable for less demanding applications where cost-effectiveness is a priority. They can be adequate for many general-purpose uses.

Cost Considerations: VD route steels typically incur higher costs due to the additional processing step (vacuum degassing). However, the enhanced performance may justify the expense in critical applications.

Common Myths Debunked:

  • Myth: VD route steels are always necessary. (Reality: Non-VD steels are suitable for many applications.)

  • Myth: Non-VD route steels are inferior. (Reality: They offer a balance of cost and performance for suitable uses.)

  • Myth: VD route steels eliminate all defects. (Reality: Proper selection and quality control remain essential.)

  • Myth: Non-VD route steels are unfit for critical applications. (Reality: They can be suitable depending on requirements and quality control.)

  • Myth: VD route steels always have better machinability. (Reality: Machinability depends on composition and heat treatment as well.)

  • Myth: All high-strength steels are VD route steels. (Reality: High-strength steels can be produced through various processes.)

Conclusion:

By understanding the differences between VD and non-VD route steels, you can make informed material selections that optimize performance and cost-effectiveness in your projects. VD steels excel in critical applications, while non-VD steels offer a valuable option for many general-purpose uses.

Steelmet Industries offers both VD and non-VD route steels to cater to diverse customer needs. Contact us to discuss your specific requirements and let us help you choose the ideal steel for your project.

#SteelIndustry #VDSteel #MaterialSelection #EngineeringMaterials #SteelQuality #IndustrialManufacturing #SteelMetallurgy #SteelManufacturing

The importance of using graded steel bars over ungraded mild steel bars in manufacturing

In the manufacturing industry, the choice of materials plays a critical role in determining the quality, efficiency, and cost-effectiveness of the final product. When it comes to machining, the selection of steel bars is especially important. Two common options are ungraded, untested mild steel bars and graded steel bars. While ungraded mild steel may seem like an economical choice, using graded steel bars offers significant advantages that can greatly impact the manufacturing process and the end product.

Understanding Mild Steel Bars

Mild steel, also known as low-carbon steel, is a versatile material widely used in various industries due to its affordability and malleability. It typically contains a low percentage of carbon, usually around 0.05% to 0.25%, which makes it easier to shape and machine. However, the term “ungraded” implies that the steel has not been subjected to standardized testing or classification based on its mechanical properties and composition.

The Drawbacks of Ungraded Mild Steel Bars

  1. Inconsistent Quality: Ungraded mild steel bars often lack consistency in their chemical composition and mechanical properties. This variability can lead to unpredictable performance during machining, resulting in issues like uneven cutting, poor surface finish, and unexpected tool wear.
  2. Higher Scrap Rates: Due to the lack of quality control, ungraded mild steel bars can contain impurities or inconsistencies that lead to higher scrap rates during machining. This not only wastes material but also increases production costs.
  3. Increased Tool Wear: The inconsistency in the hardness and composition of ungraded mild steel bars can cause uneven tool wear, leading to frequent tool changes and downtime. This affects the efficiency of the machining process and increases maintenance costs.
  4. Unreliable Mechanical Properties: Without proper grading, there is no assurance that ungraded mild steel bars will meet the necessary mechanical standards for specific applications. This can result in parts with inadequate strength, leading to potential failures in critical applications.

The Advantages of Using Graded Steel Bars

  1. Consistent Quality and Performance: Graded steel bars are subjected to rigorous testing and classification, ensuring a consistent chemical composition and mechanical properties. This reliability allows for predictable performance during machining, leading to better quality parts with minimal defects.
  2. Reduced Scrap and Waste: The consistency of graded steel bars reduces the likelihood of encountering defects or impurities, resulting in lower scrap rates. This translates into cost savings on material and more efficient use of resources.
  3. Improved Tool Life: With uniform hardness and composition, graded steel bars cause less wear on cutting tools. This not only extends the life of the tools but also minimizes the need for frequent tool changes, reducing downtime and increasing productivity.
  4. Better Mechanical Properties: Graded steel bars are chosen based on specific mechanical requirements, ensuring that the material meets the necessary standards for the intended application. This reliability is crucial for parts that require high strength, durability, and precise tolerances.
  5. Traceability and Certification: Graded steel bars often come with certifications and traceability, providing assurance of quality and compliance with industry standards. This is particularly important in industries where safety and reliability are paramount, such as automotive, aerospace, and construction.

Conclusion

While ungraded mild steel bars may initially appear as a cost-saving option, the hidden costs associated with inconsistent quality, increased scrap, and higher tool wear can quickly outweigh any initial savings. Graded steel bars, on the other hand, provide a reliable and consistent material that ensures better machining performance, higher quality parts, and overall cost-effectiveness.

For manufacturers looking to optimize their machining processes and produce high-quality products, investing in graded steel bars is a smart choice. The benefits of reduced waste, improved tool life, and reliable mechanical properties make graded steel bars a superior option, ultimately leading to greater efficiency and profitability.

For more information on selecting the right steel bars for your manufacturing needs, visit Steelmet Industries.

Barras de Aço Brilhante vs. Barras Laminadas a Quente: Qual é a Melhor Escolha para Você?

Você é um fabricante em busca de maneiras de melhorar a eficiência e reduzir custos? Escolher o #aço certo para o seu projeto pode fazer uma grande diferença.

Quando se trata de selecionar o aço ideal para suas necessidades de fabricação, a escolha entre #BarrasDeAçoBrilhante e #BarrasDeAçoLaminadasAQuente pode impactar significativamente a eficiência, qualidade e custo das suas operações. Na Steelmet Industries, nos orgulhamos de produzir #BarrasDeAçoBrilhanteTrefiladasAFrio de alta qualidade, que oferecem diversas vantagens em relação às barras laminadas a quente. Neste artigo, vamos detalhar uma comparação para ajudá-lo a entender por que as barras brilhantes são a escolha superior para seus projetos.

1. Aparência

  • Barras de Aço Brilhante:
    • Superfície Lisa e Brilhante: As barras brilhantes possuem um acabamento superior, com uma superfície lisa, brilhante e polida, reduzindo a necessidade de acabamentos adicionais.
    • Precisão Dimensional: O processo de trefilação a frio garante tolerâncias dimensionais rigorosas e excelente retilineidade.
  • Barras de Aço Laminadas a Quente:
    • Superfície Áspera: As barras laminadas a quente têm uma superfície áspera e escamosa devido ao processamento em alta temperatura.
    • Variabilidade Dimensional: O processo de resfriamento pode causar leve empenamento, resultando em menor precisão.

2. Propriedades Mecânicas

  • Barras de Aço Brilhante:
    • Maior Resistência à Tração: O processo de trefilação a frio aumenta a resistência à tração.
    • Melhor Resistência ao Escoamento: A resistência ao escoamento aprimorada torna as barras brilhantes mais resistentes à deformação.
  • Barras de Aço Laminadas a Quente:
    • Menor Resistência à Tração: As barras laminadas a quente têm resistência à tração comparativamente menor.
    • Resistência ao Escoamento Inferior: Geralmente mais baixa, tornando-as menos adequadas para aplicações de alto estresse.

3. Propriedades Físicas

  • Barras de Aço Brilhante:
    • Dureza Superficial Aprimorada: A dureza superficial aumentada melhora a resistência ao desgaste.
    • Ductilidade e Tenacidade Melhoradas: Melhor ductilidade e tenacidade as tornam ideais para deformação sem ruptura.
  • Barras de Aço Laminadas a Quente:
    • Dureza Variável: As barras laminadas a quente apresentam dureza superficial inconsistente.
    • Ductilidade e Tenacidade Reduzidas: Processos em alta temperatura podem reduzir essas propriedades.

4. Eficiência de Custos

  • Barras de Aço Brilhante:
    • Custo de Produção Mais Alto: A trefilação a frio é mais intensiva, mas reduz os custos de usinagem e acabamento.
    • Custo de Usinagem Reduzido: O acabamento superficial superior e a precisão dimensional diminuem os custos gerais de usinagem.
    • Desgaste de Máquinas e Ferramentas Menor: A consistência reduz o desgaste.
  • Barras de Aço Laminadas a Quente:
    • Custo de Produção Mais Baixo: Processo mais simples, mas exige usinagem extensiva.
    • Custo de Usinagem Mais Alto: Superfícies ásperas e dimensões variáveis demandam mais usinagem.
    • Desgaste de Máquinas e Ferramentas Aumentado: Inconsistências causam maior desgaste.

5. Eficiência e Redução de Resíduos

  • Barras de Aço Brilhante:
    • Tempo de Ciclo Mais Curto: Menos usinagem resulta em produção mais rápida.
    • Resíduos e Sucata Mínimos: A precisão resulta em menor desperdício.
    • Maior Rendimento: Mais peças podem ser fabricadas com o mesmo peso de aço.
  • Barras de Aço Laminadas a Quente:
    • Tempo de Ciclo Mais Longo: Exige acabamento extensivo.
    • Resíduos e Sucata Maiores: A variabilidade leva a mais sucata.
    • Rendimento Menor: Menos peças com o mesmo peso de aço.

Conclusão

Escolher #BarrasDeAçoBrilhante em vez de #BarrasDeAçoLaminadasAQuente oferece inúmeras vantagens, incluindo aparência superior, propriedades mecânicas e físicas aprimoradas, custos de usinagem reduzidos, menor desgaste de ferramentas e eficiência de custos geral. Na Steelmet Industries, nosso compromisso com a qualidade garante que nossas barras brilhantes ofereçam esses benefícios, ajudando você a alcançar melhor desempenho e produtividade.

Aplicações:

  • #Eixos
  • #Engrenagens
  • #Parafusos
  • #Pinos
  • #Buchas
  • #ComponentesUsinados

Para mais detalhes, entre em contato e nossa equipe ajudará na seleção da matéria-prima certa para suas necessidades.

#AçoIndustrial #Eficiência #ReduçãoDeCustos #TrefilaçãoAFrio #SteelmetIndustries #EngenhariaDeMateriais #Manufatura #QualidadeDoAço

Entendendo os Diferentes Graus de Aço: Um Guia para Compradores

No setor de manufatura, a escolha do #material correto é crucial. Entre as várias opções disponíveis, o #aço é uma escolha preferida em diversas indústrias.

No entanto, nem todo aço é criado igual. Suas #propriedades e #desempenho podem variar significativamente dependendo do seu grau.

Neste guia, exploraremos os diferentes graus de aço e forneceremos insights essenciais para ajudá-lo a tomar decisões informadas.


#GrausDeAçoCarbono

Um dos tipos de aço mais fabricados e utilizados é o #AçoCarbono, distinguido pelo seu teor de carbono. Ele é geralmente dividido em três sub-graus:

  • Aço de Baixo Carbono (Aço Leve):
    Contendo menos de 0,25% de carbono, este tipo é mais #dúctil e oferece excelente #soldabilidade. É comumente usado em peças automotivas, construção e aplicações gerais.

  • Aço de Médio Carbono:
    Com teor de carbono entre 0,25% e 0,60%, ele equilibra resistência e ductilidade, sendo ideal para aplicações como #engrenagens e #estruturasmetálicas.

  • Aço de Alto Carbono:
    Este grau, com mais de 0,60% de carbono, é conhecido por sua #dureza e #resistênciaAoDesgaste. É usado em aplicações que exigem alta resistência, como #ferramentasDeCorte e #molas.


Graus de Aço-Liga

Os aços-liga contêm um ou mais #elementosDeLiga como cromo, níquel, tungstênio, alumínio e molibdênio para melhorar propriedades específicas. Os principais tipos incluem:

  • Aço-Liga de Cromo-Molibdênio (Cr-Mo):
    Reconhecido por sua resistência e tenacidade, este aço é usado em #vasosDePressão e #aplicaçõesEstruturais.

  • Aço-Liga de Níquel:
    A adição de níquel melhora a #tenacidade e a #resistênciaÀCorrosão, tornando-o adequado para ambientes de baixa temperatura e equipamentos de processamento químico.

  • Aço Inoxidável:
    Contendo pelo menos 10,5% de cromo, oferece excelente resistência à corrosão. Sub-graus como austenítico, ferrítico e martensítico atendem a diversas aplicações, como utensílios de cozinha, dispositivos médicos e equipamentos industriais.


Graus de Aço para Ferramentas

Os aços para ferramentas são projetados para suportar alto desgaste, sendo ideais para ferramentas de corte e conformação. Os principais graus incluem:

  • Aço de Endurecimento por Água (Graus W):
    Aços econômicos endurecidos por têmpera em água, usados em #cinzéis e #cortadores.

  • Aços para Trabalho a Frio (Graus O, A e D):
    Adequados para ferramentas que exigem dureza em baixas temperaturas, como #matrizes, #punções e ferramentas de estampagem.

  • Aços para Trabalho a Quente (Graus H):
    Projetados para alto desempenho em temperaturas elevadas, perfeitos para aplicações de fundição e forjamento.

  • Aços de Alta Velocidade (Graus T e M):
    Conhecidos por sua capacidade de cortar materiais em altas velocidades, comumente usados em #brocas, machos e #fresas.


Graus de Aço Especial

Os aços especiais são adaptados para aplicações que exigem propriedades únicas. Exemplos notáveis incluem:

  • Aço para Rolamentos:
    Alta dureza e resistência ao desgaste o tornam ideal para #rolamentos e aplicações de alta carga.

  • Aço para Molas:
    Com alta resistência ao escoamento, este aço mantém sua forma após a flexão, sendo usado em #molas e componentes de alto estresse.

  • Aços de Usinagem Livre:
    Contendo enxofre ou chumbo para melhorar a usinabilidade, são usados em componentes precisos de automóveis e aeronaves.

  • Aço de Intemperismo (Corten):
    Forma uma camada protetora de ferrugem, sendo adequado para estruturas externas como #pontes e #esculturas.

  • Aço Elétrico:
    Usado em transformadores e motores, oferece alta permeabilidade magnética e baixas perdas elétricas.


Escolhendo o Grau de Aço Correto

Ao selecionar um grau de aço, considere o seguinte:

  1. Requisitos da Aplicação: Propriedades mecânicas como resistência, dureza e ductilidade.
  2. Condições Ambientais: Resistência à corrosão para ambientes severos.
  3. Processo de Fabricação: Facilidade de usinagem, soldagem ou conformação.
  4. Considerações de Custo: Equilíbrio entre desempenho e restrições orçamentárias.

Conclusão

Entender os graus de aço é vital para tomar decisões de compra bem informadas. Seja para peças automotivas, construção ou ferramentas especializadas, conhecer as propriedades e aplicações dos diversos graus ajuda a garantir a melhor escolha para suas necessidades.

Pronto para discutir suas necessidades de aço? Entre em contato com a Steelmet Industries hoje mesmo para uma consultoria gratuita e um orçamento!


| Soluções Inovadoras em Aço para um Amanhã Melhor |

Visite nosso site | Entre em Contato para Consultas

#GrausDeAço #SoluçõesDeManufatura #AçoCarbono #AçoLiga #AçoParaFerramentas #AçoEspecial #SteelmetIndustries #ResistênciaÀCorrosão #AplicaçõesDeAço

Nickel chromium molybdenum steels

Aparte

NICKEL-CHROMIUM-MOLYBDENUM STEELS
BS : 970 SAE/AISI IS:3930
IS:4432
IS:5517
C% Mn% Si% Cr% Ni% Mo%
EN16   35Mn6Mo3 0.32/0.40 1.30/1.80 0.10/0.35     0.20/0.35
EN19 4140 40Cr4 Mo3 0.38/0.45 0.50/0.80 0.10/0.35 0.90/1.20   0.20/0.35
EN24 4340 40Ni6Cr4Mo3 0.35/0.45 0.40/0.70 0.10/0.35 0.90/1.30 1.25/1.75 0.20/0.35
EN25   31Ni10Cr3Mo6 0.27/0.35 0.50/0.70 0.10/0.35 0.50/0.80 2.30/2.80 0.40/0.70
EN36   13Ni3Cr 80 0.15/0.18 0.30/0.60 0.10/0.35 0.60/1.10 3.00/3.75  
EN40B   25Cr13Mo6 0.20/0.30 0.40/0.65 0.10/0.35 2.90/3.50 0.25/0.40 0.40/0.70
EN111 3140 35Ni5Cr2 0.30/0.40 0.60/0.90 0.10/0.35 0.45/0.75 1.00/1.50  
EN-353   15 Ni Cr 1 Mo12 0.12/0.18 0.60/1.00 0.10/0.35 0.75/1.25 1.00/1.50 0.80/0.15
EN-354 4320 15 Ni 1Cr 1Mo 15 0.12/0.18 0.60/1.00 0.10/0.35 0.75/1.25 1.50/2.00 0.10/0.20
Comparison of Nickel Chromium Molybdenum Steels in different standards of the world.